

	
		
			Fritz on the Web

			My little corner of the web, full of my point of view

		

				
				
		
			Menu
			Skip to content
				Home
	Web Application and Blazor Workshop
	.NET MAUI Workshop 2023
	Live Stream
	About Jeff

		

	

	

	
		

			
				
	
				
			
						How to watermark, annotate, and digitally sign a PDF with IronPDF

										
					Leave a reply				

					

				
			Previously, I shared some code that demonstrated how the new PDF report feature was built for KlipTok. In reviewing the feature, I wanted to give it a little more value. When you read a report generated from KlipTok, I want you to know that it was genuine and accurate data. I started researching the ability to stamp or put an authentic indicator into the report so you could tell it was a real report from KlipTok. I found three techniques with IronPDF that were each amazingly easy to implement and gave different experiences when reading the PDF. Let’s take a look at each technique: watermarks, annotations, and digital signatures.

Adding a watermark

The most visible and easiest to visualize and pass on is a watermark. Back in the “old days” folks would print letters on paper that had an image or text hidden in them so that you could verify it was an official document. You’ll find this technology still used in bank checks and in paper currency, with hidden images that are only visible when the paper is held up to light.

With a PDF watermark, we can place content with a lower opacity on-top of or behind the content of our PDF. A very cool technique that I can use to put a light gray KlipTok logo over the report so that folks know it’s official.

KlipTok logo over a bar graph in a PDF

I inserted this watermark logo with a few lines of code added to my pdf generation code:

private static void ApplyKlipTokWatermark(PdfDocument doc)
{
 var watermark = new HtmlStamper("")
 Opacity = 20,
 VerticalAlignment = VerticalAlignment.Top,
 HorizontalAlignment = HorizontalAlignment.Left,
 VerticalOffset = new Length(1, MeasurementUnit.Inch),
 HorizontalOffset = new Length(2.5, MeasurementUnit.Inch),
 IsStampBehindContent = false
 };

 doc.ApplyStamp(watermark);

}

That is a pretty clear definition of a watermark. The HtmlStamper class defines the HTML that will be placed on the document, along with a location using Horizontal and Vertical alignments with offsets along with an opacity for the content. The final parameter, ‘IsStampBehindContent’ determines if this will be placed on top of the PDF content (like in the above sample) or should be placed behind the content like below:

Watermark underneath the opaque graph and not visible

Yea, the graph is opaque so we can’t see the content underneath of it. For this watermark, let’s keep it on top by setting ‘IsStampBehindContent = false’

PDF Annotations

The second technique we could use would be to introduce a PDF annotation. This allows us to add a sticky note to a document with additional information that is only available when viewed electronically. There are configuration options available that will allow viewers to be able to include the annotation on a print out, but for my purpose, I want this to just be a check available electronically.

I added another simple block of code to my PDF rendering class, to add the annotation before the PDF is delivered:

private static void AddDatestampAnnotation(PdfDocument doc, string channelName) {

 var annotation = new IronPdf.Annotations.TextAnnotation()
 {
 Title = "Rendered by KlipTok",
 Subject = "Genuine KlipTok Report",
 Contents = $"This is a genuine report from KlipTok for the Twitch channel {channelName}. It was rendered on {DateTime.UtcNow.ToString()} UTC",
 Icon = IronPdf.Annotations.TextAnnotation.AnnotationIcon.Help,
 Opacity = 0.2,
 Printable = false,
 Hidden = true,
 ReadOnly = true
 };

 doc.AddTextAnnotation(annotation, 0, 550, 750);
 		
}

I really like how easy to read these APIs are from IronPDF. I created a TextAnnotation object and set the title, subject, contents, an icon and some other visibility preferences. I the add the text annotation with a method called ‘AddTextAnnotation’ with the page number, x and y coordinates from the bottom left corner of the page.

PDF Annotation displayed over the graph when opened

That’s nice… but a little too much for this document. Can we do something a little less intruding over our content and still show some authenticity? Let’s check out a digital signature

Adding a Digital Signature

Digital signatures are the ultimate in proving that a file or a document came from a genuine source. This website you’re viewing right now is protected with Transport Layer Security and signed with a certificate. Let’s see what’s involved in adding a digital signature to our KlipTok report.

var signature = new IronPdf.Signing.PdfSignature("kliptok.pfx", "MY-PASSWORD") {

 SigningContact = "info@kliptok.com",
 SigningLocation = "Philadelphia, PA - USA",
 SigningReason = "Authentic KlipTok Report"

};
		
doc.SignPdfWithDigitalSignature(signature);

That is CRAZY simple. We create a PdfSignature object by pointing to our certificate (PFX) file, with the appropriate password for that certificate (my password is left out here to protect the innocent). I added some information about how to contact the signer, where the signing took place, and a reason. I could have added a visual signature image to go with this, combining features of the watermark technique from above.

Summary

I like the watermark and I like the digital signature techniques to prove KlipTok generated these reports. Until I find someone attempting to forge KlipTok reports, I’m going to stick with the watermark technique. It’s simple and looks good on my document.

The IronPDF APIs proved again to be easy to read and simple to implement. I continue to be impressed with the power provided and how thorough their examples are. I’ll be wrapping up this new watermark and deploying it to KlipTok very soon.

Share on Facebook
Tweet
Follow

					

		
		
			This entry was posted in Uncategorized on January 30, 2023 by Jeff.								
	

				
					Post navigation

					← How I built the first PDF report for KlipTok using IronPDF
					Blazor and .NET 8: How I Built a Fast and Flexible Website →
				

				

			
		

	

			
						Follow me on Twitch!

Follow me on Mastodon

		
				
					Search for:
					
					
				

			

		
		Recent Posts

			
					From IoT to the Cloud: A .NET Ecosystem Showcase with GitHub, Raspberry Pi, and Azure
									
	
					Blazor and .NET 8: How I Built a Fast and Flexible Website
									
	
					How to watermark, annotate, and digitally sign a PDF with IronPDF
									

		My Courses
			WintellectNow

	Get Started with Angular 2 and ASP.NET Core
	Getting Started with ASP.NET Core 1.0
	Docker for ASP.NET Core Developers
	ASP.NET Core Middleware
	Building ASP.NET Core Web UIs with Razor
	Authentication and Authorization in ASP.NET Core
	.NET Standard for Mere Mortals

	Mobilize Your ASP.NET Web Forms
	One ASP.NET from Scratch

				

		

	
		
						Privacy Policy			
				Proudly powered by WordPress			
		

	

